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Irrespective of whether one has substantial perceptual expertise
for a class of stimuli, an observer invariably encounters novel
exemplars from this class. To understand how novel exemplars are
represented, we examined the extent to which previous experi-
ence with a category constrains the acquisition and nature of
representation of subsequent exemplars from that category.
Participants completed a perceptual training paradigm with either
novel other-race faces (category of experience) or novel computer-
generated objects (YUFOs) that included pairwise similarity ratings
at the beginning, middle, and end of training, and a 20-d visual
search training task on a subset of category exemplars. Analyses
of pairwise similarity ratings revealed multiple dissociations be-
tween the representational spaces for those learning faces and
those learning YUFOs. First, representational distance changes
were more selective for faces than YUFOs; trained faces exhibited
greater magnitude in representational distance change relative to
untrained faces, whereas this trained–untrained distance change
was much smaller for YUFOs. Second, there was a difference in
where the representational distance changes were observed; for
faces, representations that were closer together before training
exhibited a greater distance change relative to those that were
farther apart before training. For YUFOs, however, the distance
changes occurred more uniformly across representational space.
Last, there was a decrease in dimensionality of the representational
space after training on YUFOs, but not after training on faces.
Together, these findings demonstrate how previous category ex-
perience governs representational patterns of exemplar learning
as well as the underlying dimensionality of the representational
space.

visual expertise | perceptual learning | object recognition | category
learning | mental representations

Research in vision science has uncovered several visual cate-
gories for which individuals evince highly skilled perception,

including that of birds (1–3), dogs (4), cars (5), radiologic images
(6), geological specimens (1), and computer-generated novel
stimuli, such as greebles (7, 8), to name a few. The standard
bearer for highly skilled visual perception, however, has been the
category of faces for which observers demonstrate remarkable
feats of recognition and individuation.
Several signatures of fine-grained visual perception have

emerged as a result of these investigations of perceptual exper-
tise and are used as diagnostic markers of visual skills. One such
signature is the extent to which performance is adversely im-
pacted by inversion (for example, 180° picture-plane rotation).
That experts are more affected by inversion than novices is as-
sumed to result from the increased sensitivity of the visual system
to the typical arrangement of features in experts. Another
characteristic of expert perception is that the discrimination of
exemplars within the expert category is as good as the discrimi-
nation of exemplars between categories (2). This suggests that
representations of individual objects of the expert category, even
if similar visually, are easily encoded and matched to their stored
counterparts: For example, whereas experts retrieve sub-
ordinate- and basic-level labels in their domain of expertise with

equal speed, they show the standard basic-level advantage out-
side this domain (3). A final criterion for ascribing expert-level
competency concerns the ability to generalize across inputs. That
is, individuals can rapidly discriminate or even individuate new
exemplars that fall within the distribution of a previously estab-
lished expert category, with little cost to processing efficiency (9).
The underlying theoretical assumption that brings together

these different behavioral assays of expertise is the existence of a
representational space in which exemplars are sufficiently dif-
ferentiated to permit highly skilled perception. Face Space (10)
is perhaps the best-established theory of a psychological simi-
larity space. In Face Space, dimensions correspond to the dif-
ferent visual features across which faces vary, although these
dimensions need not map onto easily verbalizable features (11).
The Euclidean distance between unique exemplars within this
space corresponds to perceptual similarity with typical faces
occupying the centroid of the space and disproportionately
atypical faces situated closer to the periphery of the space. Many
of the predictions made by Face Space theory have been sup-
ported empirically (12), providing overwhelming support for the
existence of such a psychological similarity space in visual
processing.
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visual discrimination. However, it remains unknown how rep-
resentations develop and what governing principles drive
changes in representational space more generally. Here, we
explore how previous category experience constrains change
in representational space during novel exemplar learning.
These experiments implicate three types of representational
change by which individuals develop visual expertise and the
manner in which subsequent exposure within the same do-
main influences representations. Our findings demonstrate
that previous category experience influences the selectivity,
locality, and change in dimensionality of representational
space that occurs during learning. Together, this evidence re-
veals a representational mechanism by which highly skilled
visual perception emerges.

Author contributions: E.C. and M.B. designed research; E.C. performed research; E.C.
contributed new reagents/analytic tools; E.C. analyzed data; and E.C. and M.B. wrote
the paper.

Reviewers: J.W.T., University of Victoria; and A.C.-N.W., Chinese University of Hong Kong.

The authors declare no competing interest.

Published under the PNAS license.

Data deposition: Data and experimental materials are publicly available at DOIs 10.1184/
R1/11869524, 10.1184/R1/11991642, and 10.1184/R1/11991636.
1To whom correspondence may be addressed. Email: behrmann@cmu.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1912734117/-/DCSupplemental.

First published May 4, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.1912734117 PNAS | May 19, 2020 | vol. 117 | no. 20 | 11167–11177

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

https://orcid.org/0000-0002-3814-1015
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1912734117&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://doi.org/10.1184/R1/11869524
https://doi.org/10.1184/R1/11869524
https://doi.org/10.1184/R1/11991642
https://doi.org/10.1184/R1/11991636
mailto:behrmann@cmu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912734117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912734117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1912734117


In the same way that Face Space offers a unifying theory of
face perception, one can use the principles of a representational
space to develop a representational theory of visual expertise.
Across the many behavioral assays of visual expertise, some of
which are discussed above, is the assumption that representa-
tions are sufficiently separated in space to permit rapid differ-
entiation or individuation of visual objects. Additionally, the
specific dimensions of an established representational space are
sufficiently well established such that they are not dramatically
perturbed as an individual encounters new exemplars within the
existing distribution of the expert category. Indeed, these di-
mensions are so well established that manipulation of these
features or their arrangement, such as in face inversion, results in
an outsized decrement in processing in the expert compared to
the novice perceiver. The obvious first question to ask is how an
“expert representational space” develops with experience. How
do representational spaces, in general, change as individuals
move along the continuum of experience from novice to expert?
One might predict that given differing amounts of previous ex-
perience, subsequent learning would differentially impact rep-
resentational space. For example, when encountering a novel
visual category, one might expect representational changes to be
nonspecific, as dimensions of the space have not yet been
established. In contrast, in individuals with substantial previous
experience, one might expect representational changes to be
privileged to certain areas within the representational space so as
to permit differentiation among the most similar exemplars.
Quantification of the space itself in the context of novel exem-
plar learning might itself serve as a behavioral assay of visual
expertise. An expert representational space might simply corre-
spond to a sufficiently well-established space, whose dimensions
permit generalization to novel exemplars, akin to the “intrinsic
manifold” described in the domain of motor learning (13, 14).
In the present study, we interrogate the changes in represen-

tational spaces at two different points along the continuum of
visual expertise during exemplar learning. Doing so permits us to
test several of the assumptions of the visual expertise literature,
as well as harness a variety of behavioral assays under a single
representational theory of visual expertise. We examine these
predictions by adopting a microgenetic approach to characterize
and quantify changes in representational space prior to and after
a perceptual training paradigm.
The elucidation of representational change has gained in

popularity recently, especially in neuroscience studies that ex-
plore neural patterns evoked in response to specific visual
stimuli. Representational similarity analyses (RSA), which
quantify representational distances between any number of cat-
egories, conditions, or objects, have also become increasingly

popular (15, 16). RSA alone, and to an even greater degree when
paired with multivariate decoding techniques, provide insights
into the representational bases of stimuli and permit powerful
representational comparisons across both visual categories and
imaging techniques (17, 18).
Thus far, most studies that explore learning-induced repre-

sentational or neural changes have compared changes between
categories or conditions (8), rather than changes of individual
exemplars across time. The few perceptual learning studies that
have measured changes between individual stimuli typically train
individuals on an entire set of stimuli and then report the results
for the entire group of stimuli (19), averaging over individual
stimuli, rather than comparing dynamic changes in representations
of individual instances. Although these approaches are valuable,
they do not necessarily reflect the type of perceptual learning in
which observers encounter only a single new exemplar or two new
exemplars at a time, as is the case for observers under more
naturalistic conditions. As such, these existing approaches limit the
extent to which one can detect changes in object-level represen-
tations in response to single, novel exemplars.

The Present Study
In the present study, we adopt a behavioral representational
approach in the context of a perceptual training paradigm in
which individuals encounter and learn only a few exemplars at a
given time, and in which the exemplars are drawn either from a
category with which individuals have substantial experience
(faces) or from a novel category (novel computer-generated
objects [YUFOs]). We quantified the representational space of
the trained and nontrained exemplars pre-, mid-, and post-
learning. We hypothesized that exemplar learning has differen-
tial effects on representational space depending on the previous
experience of the learner. Specifically, we predicted that exem-
plar learning within a familiar category will result in represen-
tational changes specific to the trained objects; because the
representational space for an existing category is relatively stable
and the dimensions well established, any changes are expected to
be small and specific to the novel exemplars. In contrast, we
predicted that learning exemplars within a novel category will
drive more generalized changes in representational space in
addition to changes specific to the object being learned. Finally,
we hypothesized that, whereas exemplar learning would not
substantially change the dimensionality of the preexisting rep-
resentational space for faces, we predicted changes in the di-
mensionality of representational space for the YUFOs as the
relevant dimensions along which exemplars vary have not yet
been extracted.

Family 1 Family 2 Family 3

Fig. 1. Stimuli for novel object (Upper) and ORF (Lower) experiments. The novel face image set consists of 30 young faces of East Asian descent. The novel
object set (YUFOs) also contains 30 objects. In this figure, novel objects are not to scale with face stimuli.
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Of note, for the familiar category, we implemented training
with other-race faces (ORFs), rather than with own-race faces, to
ensure that performance was not at ceiling (20) and that par-
ticipants could still show improvements on the training task over
subsequent sessions. Although ORFs are not necessarily a cat-
egory of visual expertise per se, participants likely bring to bear
their previous experience with own-race faces when confronted
with novel ORFs. Furthermore, inversion effects have been
documented during ORF perception, suggesting similarity in the
visual processes of own-race faces (21, 22).

Materials and Methods
Participants. This study was approved by the Institutional Review Board of
Carnegie Mellon University and informed consent was obtained from all
participants. Thirty-seven participants completed the study (female = 24;
average age = 27, SD = 2.9) and were paid for their participation. Partici-
pants who completed the version of the study with ORFs were Caucasian,
ensuring that individuals would not be making own-race face judgements
(23). All participants reported that they had normal or corrected-to-normal
vision.

Stimuli.
YUFOs. We used computer-generated YUFOs (24) as they are well controlled
for color, lighting, size, variability in shape, and alignment at multiple
viewing angles and do not obviously resemble faces (Fig. 1). These novel
objects have been used successfully in previous studies to advance our un-
derstanding of how humans learn to recognize novel objects (25–27), al-
though none of these studies explored the questions about representation
being addressed here. The YUFO stimulus set is divided into subgroups or
“families,” each of which contains 12 unique objects. We used all of two
family sets and half of an additional family set, totaling 30 unique objects
belonging to one of three families. A family simply refers to a group of
stimuli that are specifically designed to be similar to each other compared to
two objects from different families. Different families are intended to rep-
resent more basic-level category differences compared to within-family
differences, which are more consistent with subordinate-level differences.
The family structure of this YUFO set permits experimental control over the
extent to which individuals must perform more or less fine-grained visual
analysis. Of note, these levels of differentiation do not necessarily correlate
with traditional taxonomic concepts of basic and subordinate, but rather
refer to overall difficulty of the visual discrimination. Importantly, as de-
tailed below, stimuli used for training were pseudorandomly selected and
counterbalanced such that each stimulus was presented roughly the same
number of times.
Other-race faces. For the ORF image set, we selected face images from the
Multi-Pie face database (28). The stimuli consisted of 30 face identities,
consisting of an equal number of men and women of Asian descent with no
obvious facial hair or accessories (e.g., glasses, piercings, and so forth). The
images were aligned at the eyes, cropped to exclude external facial features,
and manipulated such that all faces had the same mean color values in
L*a*b color space. There were two expressions (happy/neutral) and nine
viewing angles per identity. The inclusion of multiple expressions in the ORF
set, of which there is no equivalent in the YUFO stimulus set, was designed
to induce additional difficulty for participants when making comparisons of
faces. This ensured that participants would not be at ceiling on the training
paradigm at the outset of the experiment.

Although the structure of the stimulus sets for the ORFs and YUFOs is not
identical and this is extremely difficult to achieve, given their obvious con-
straints, we would predominantly be exploring representational changes
within each set over the course of training rather than focusing on direct
comparisons between the effects of training of the different sets. Further-
more, and critical to our design, as we note below, behavioral performance
for ORF and YUFO discriminations are comparable prior to the imple-
mentation of training, ensuring perceptual equivalence and titration of the
two sets a priori.

Learning Paradigm. Independent of which stimulus set was trained, to eval-
uate learning-induced representational changes, we conducted an extended
learning paradigm consisting of 26 sessions (Fig. 2). There were 20 total days
of perceptual training and 6 additional days in which participants made
similarity ratings (2 d at each of the beginning, midpoint, and end of
training). This design enabled us to quantify representational space sepa-
rately for the first and second half of training. By including two sets of ex-
emplars for learning and for obtaining separate ratings, we could uncover

the extent to which there was generalization across the sets as well as any
benefits of additional training. Second, several other studies have employed
training paradigms of about 10 d and have provided evidence of success
with such a timeline (7, 29), but because we required considerable data to
obtain reliable estimates per identity, we used this extended design.

Similarity Ratings. As noted above, participants completed three sets of
similarity ratings. Each set of ratings consisted of pairwise similarity judge-
ments for all possible combinations of 60 total images of 30 total objects (two
images per object) using an ordinal scale with 1 (clearly different objects) to 7
(clearly the same object). For the YUFO experiment, the two images of each
object differed in viewing angle (always +30° or −45° from center facing).
YUFO images subtended an approximate visual angle of 8° horizontally and
vertically. For the ORF version of the experiment, the two images of each
face were forward facing, but differed in expressions (neutral/happy). Face
images subtended an approximate visual angle of 6° horizontally and 8°
vertically.

Each trial beganwith a fixation screen for 100ms. This was followed by the
first image for 250 ms and then immediately by the second image for 250 ms.
Finally, a blank screen appeared with a central “?” directing the subject to
respond using the keyboard (1–7 buttons). The “?” was left on the screen
until the subject responded. Each object image was spatially jittered across
the central horizontal axis of the screen to reduce feature-by-feature
judgements: Horizontal image positions were randomly drawn from a
Gaussian distribution centered at the vertical axis and with a SD of 3°. Each
set of ratings included 1,830 trials (each image was also rated against itself),
split evenly over two sessions on consecutive days, with 915 trials of simi-
larity ratings per session. At the beginning of each rating session, 10 practice
trials of randomly selected stimuli allowed participants to acclimate to
the task.

Although participants may have learned to differentiate or individuate
unique exemplars over the course of rating (and not just training) sessions,
because the number of trials, number of unique objects, and number of
stimuli were identical for ORFs and YUFOs, any changes in similarity ratings
observed between the two classes cannot be obviously explained by the
rating procedure itself.

Perceptual Training. Participants completed 20 total sessions of the perceptual
training task, divided into two periods of 10 d each (separated by ratings
session). During each session, held once per day, participants completed 240
trials of a visual search task. The task explicitly trained individuals to recognize
4 of the possible 30 exemplars. Participants were instructed that the task was
specifically designed to help them recognize four specific exemplars. An
additional 8 exemplars served as distractors (taken from the set of 30 used
during similarity ratings).

For those completing the task with YUFOs, on each trial (Fig. 3), one of the
four possible training objects was centrally presented for 200 ms at a hori-
zontal and vertical visual angle of 8°, followed by a 400-ms fixation.
Thereafter, four object images, each with a horizontal and vertical visual
angle of 5°, were displayed in a circle, each equidistant from the center of
the screen, and remained on the screen until the participant selected, with
one of the four arrow keys, the image of the object initially presented. To
encourage engagement in the task, participants were awarded points based
on accuracy and reaction time. Participants received at least 50 points per
correct trial in addition to points based on a reaction time exponential decay
function. Negative points were awarded for incorrect trials corresponding to
the trial number (−17 points for incorrect response on trial 17). This made
incorrect responses increasingly punitive over the course of a training ses-
sion. This design encouraged participants to complete the task as quickly
and accurately as possible.

For the YUFO version of the experiment, individuals followed one of two
training schemes, summarized in Table 1. The choice to implement two

Ra ngs 1:
2 Days

Ra ngs 2:
2 Days

Ra ngs 3:
2 Days

Training 1
10 Days

Training 2
10 Days

Fig. 2. Learning paradigm flow diagram. Representational space was
quantified at the beginning, middle, and end of training, using 2 d of
pairwise similarity ratings at each point. Perceptual training involved a visual
search task completed over 20 d, with a break after day 10 to quantify the
representational space with similarity ratings. Participants were instructed to
complete one session per day, consecutively, for 26 d.

Collins and Behrmann PNAS | May 19, 2020 | vol. 117 | no. 20 | 11169

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S



versions of the YUFO experiment stems from previous research indicating
that subordinate-level processing is the entry point to visual expertise [for
example, in wading birds (30)]. However, any results we obtain might simply
reflect exposure to a novel category more generally, rather than the specific
effect of subordinate-level discrimination. To test this possible explanation,
we implemented two versions of the YUFO experiment that differed in the
number of subordinate-level discriminations. For participants completing
YUFO-A, there was a mix of subordinate-level and family-level discrimina-
tions, whereas for those completing YUFO-B, perceptual training included
only subordinate-level discriminations. In the analyses below, we explore the
extent to which this manipulation differentially impacted changes in
representational space.

In the first case (YUFO-A), participants (n = 11) first learned two members
each of families 2 and 3, and then learned four members of family 1 in the
second training block. In this case, distractors for the first training block
included a random four objects from family 2 and four from family 3; for the
second training block, distractors were reused from the first training block.
In the second case (YUFO-B), individuals (n = 13) learned either four mem-
bers of family 2 or four members of family 3 during the first training block,
and then the other family exemplars during the second learning block,
counterbalanced across subjects. In this case, the distractors for each block
were simply the remaining eight objects from the same family as the items
being learned.

In both YUFO experiments, the sample image and subsequent test images
always differed in viewing angle, but were otherwise selected randomly.
There were nine possible viewing angles for each novel object, including
forward facing (0°), and positive and negative 15°, 30°, 45°, and 60°
from center.

For the ORF version of the experiment, individuals (n = 13) learned a
randomly selected four male or four female identities. An 8 additional
gender-matched distractors were randomly selected from the larger set of
15 same-gender identities (from the 30 identities used during similarity
ratings). During the second training block, participants then learned a new
set of randomly selected four identities from the gender that differed from
that used in first training block. Training order was counterbalanced across
subjects. Just as with YUFOs, the sample image (8 × 6° in visual angle) and
subsequent test images (6 × 5° in visual angle) always differed in viewing
angle, but were otherwise selected randomly. In addition, the initial sample
image always differed in expression (happy/neutral) from the subsequent
test images. Just as in the YUFO experiment, there were nine viewing angles
for each face identity, including forward facing (0°), and positive and neg-
ative 15°, 30°, 45°, and 60° from center. Again, the rating and training
procedures for YUFOs and ORFs were exactly the same, with the exception
of the stimuli used.

In balancing these training regimes, we prioritized equating initial training
difficulty across YUFOs and ORFs rather than precisely balancing the number
of stimuli or their orientation across the stimulus types. Given that our central
hypothesis focuses on the effect of preexisting category experience on
subsequent exemplar learning, we made every effort to ensure that, at the
outset, the training regimens yielded equivalent performance and, as shown

below, there was no initial difference across the two classes (Fig. 4). In
confirming a level playing field at the outset, any results between the two
stimulus sets likely reflect differences in preexisting category experience
rather than differences evoked by unequal difficulties of the training task.

Analysis and Results
Perceptual Training Results. In the analyses of the training data, we
utilized as the dependent measure inverse efficiency (31), cal-
culated as reaction time divided by accuracy. When participants
are instructed to complete the task as quickly and as accurately
as possible, some preferentially respond to minimize one mea-
sure or the other. In addition, participants were awarded points
during the training sessions based on their accuracy and reaction
time (SI Appendix, Fig. S1 summarizes group-level performance
with respect to accuracy and reaction time, separately). Inverse
efficiency has been shown to incorporate varying strategies
across participants effectively (31–33). A summary of group-level
responses is shown in Fig. 4, which plots inverse efficiency over
training sessions. In the analyses below, we use the term “training
section” to denote a within-subjects factor with two levels
(training period 1/training period 2; T1/T2).
Using inverse efficiency as the dependent variable, a repeated-

measures ANOVA with training section (T1/T2) and session
(sessions 1 to 10) as within-subjects factors, and experiment
(YUFO-A/YUFO-B/ORFs) as a between-subjects factor revealed
no significant three-way interaction, F(18, 306) = 0.74; P = 0.76;
η2 = 0.03. There was a significant two-way interaction of training
section × session [F(9, 306) = 7.37; P < 0.001; η2 = 0.17],
reflecting the better performance in later sessions in T1 than in
T2, but no significant interaction of training section × experi-
ment [F(2, 34) = 0.15; P = 0.86; η2 = 0.005]. There were also
main effects of training section [F(1, 34) = 23.1; P < 0.001; η2 = 0.40]
and session [F(9, 306) = 74.4; P < 0.001; η2 = 0.65], which is
unsurprising given the interaction of these factors. These main
effects indicate that participants clearly improved across sessions
and that performance was better in the second (sessions 11 to 20)
than first (sessions 1 to 10) half of training in all three experiments
to an equivalent degree.
Because distinctions between learning ORFs and YUFOs is of

primary interest here, we were especially interested in the main
effect of experiment [F(2, 34) = 5.84; P = 0.007; η2 = 0.26], which
was qualified by a two-way interaction of experiment × session
[F(18, 306) = 2.59; P < 0.001; η2 = 0.05]. We therefore con-
ducted additional post hoc tests to understand further the effect
of experiment on inverse efficiency performance. Close in-
spection of Fig. 4 shows that the differential effect of experiment
on inverse efficiency across session results from a greater im-
provement in the first few sessions in both T1 and T2. To eval-
uate this, we conducted a post hoc analysis between experiments
for sessions 1 to 3 and 11 to 13 by calculating the difference in
inverse efficiency between session 1 and session 3 for T1 and
between session 11 and session 13 for T2, and compared these
between experiments. In T1, a one-way ANOVA was significant
[F(2, 34) = 4.02; P = 0.02; η2 = 0.19], and post hoc Bonferroni-
corrected pairwise comparisons revealed more rapid learning
(lower inverse efficiency) for those in the face experiment than

200ms

400ms

+

Fig. 3. Participants completed 240 match-to-sample trials per training ses-
sion to facilitate learning of four specific novel objects. Viewing angle in the
first image always differs from all viewing angles of all objects in the visual
search images. In the face version of this experiment, faces differed in
viewing angle in the same manner, but also differed in expression.

Table 1. Individuals completed one of three possible
experiments during the 26-d learning paradigm

Version YUFO-A Version YUFO-B Version ORF

Ratings 1 12 F2, 12 F3, 6 F1 12 F2, 12 F3, 6 F1 15 Male, 15 Female
Training 1 2F2 and 2F3 4 F2 or 4 F3 4 Male or 4 Female
Ratings 2 12 F2, 12 F3, 6 F1 12 F2, 12 F3, 6 F1 15 Male, 15 Female
Training 2 4F1 4F2 or 4F3 4 Female or 4 Male
Ratings 3 12 F2, 12 F3, 6 F1 12 F2, 12 F3, 6 F1 15 Male, 15 Female
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those in the YUFO-B experiment [t(25) = 2.68; P = 0.03].
However, there were no differences between the face and
YUFO-A experiments [t(23) = 2.10; P = 0.13] or between the
two YUFO experiments themselves [t(23) = 0.47; P = 1.00]. The
same pattern of results was observed in the second section of
training (sessions 11 to 13). The one-way ANOVA was signifi-
cant [F(2, 34) = 5.65; P = 0.008; η2 = 0.25], and post hoc
Bonferroni-corrected t tests revealed more rapid learning in the
face experiment than in the YUFO-B experiment [t(25) = 3.35;
P = 0.006]. Again, there were no differences between ORFs and
YUFO-A experiments [t(23) = 1.84; P = 0.22] or between the
YUFO experiments themselves [t(23) = 1.36; P = 0.54], sug-
gesting that YUFO-A fell intermediate between the other two
experiments.

Analysis of the main effect of experiment by one-way ANOVA
revealed no difference in average inverse efficiency in training
section 1 (T1) across experiments [F(2, 34) = 2.24; P = 0.12; η2 =
0.15]. There was, however, a significant difference in average
performance across training section 2 (T2) [F(2, 34) = 17.7; P <
0.001; η2 = 0.51]. Post hoc Bonferroni-corrected pairwise com-
parisons revealed that those completing the YUFO-B experi-
ment performed more poorly than both those in YUFO-A [t(23)
= 4.21; P < 0.001] and in ORF experiments [t(25) = 5.70; P <
0.001], which did not differ from each other [t(23) = 1.25;
P = 0.65].
Together, the analyses of the training data reveal that partic-

ipants improved over successive sessions, and that performance
was better overall in the second relative to the first half of
training. There were some modulating effects of particular
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similarity space) across three sessions. Red (1, very different) and blue (7, very similar) correspond to different ends of the rating spectrum. A general increase
in red (more negative) corresponds to objects being rated less similar, hence, moving farther apart. Black boxes correspond to the structure of stimulus sets.
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female faces.
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experiments; for example, when the number of subordinate-level
discriminations was matched (faces vs. YUFO-B), those in the
face training experiment performed better overall in T2 than
those in YOFU-B experiment and, in both training sections (T1/
T2), they also improved disproportionately across the first few
sessions of training. There were no obvious differences between
YUFO-A and faces or YUFO-B and YUFO-A as a function of
session or training section. These findings suggest that the two
YUFO experiments employed here overlap substantially, and
therefore do not permit further inferences regarding subordinate
and basic levels of processing and their role in the development
of visual expertise. Importantly, these results are not inconsistent
with findings that suggest that subordinate-level discrimination is
the “entry point” to visual expertise. Many possible explanations
can be offered for this inconsistency, including the fact that
both YUFO tasks employed substantial subordinate-level dis-
criminations (just more in YUFO-B than in YUFO-A) and the
fact that a subordinate-level advantage may depend on some
familiarity with category and YUFOs are entirely novel for the
observers. Other assays of posttraining performance might
uncover differences between the YUFO experiments (e.g.,
differential inversion effects), but under these testing condi-
tions, no differences were evident. Most importantly, these
results show that initial training difficulty was well matched
between conditions and that the pattern of observed training
results was relatively similar between conditions, particularly
during T1.
Having evaluated the effects of acquisition of novel exemplars,

we next carried out more detailed representational analyses to
assess the fate of individual exemplars across the similarity
rating sessions.

Similarity Ratings.
Magnitude of changes in representational space. To compare similarity
ratings across the three training scenarios (faces, YUFO-A, and
YUFO-B), we converted all pairwise ratings to a 30 × 30 simi-
larity matrix for each participant, where each cell reflects the
average of similarity judgments between the two unique object
identities. There were two images of each unique object, yielding
four pairwise judgements between each pair of unique objects.
The raw group-level similarity matrices are shown in Fig. 5.
Histograms of raw response frequency at the group level are
included in SI Appendix, Fig. S2. To obtain the difference be-
tween ratings sessions, we simply created a difference matrix by
subtracting the matrix of the first rating session from the second
rating session (and separately, subtracting the matrix of the
second rating session from that of the third, yielding two dif-
ference matrices per participant, corresponding to T1 and T2).
In the analyses below, we use the term “training section” to
denote a within-subjects factor with two levels (T1/T2). Note that
a negative change in similarity corresponds to objects moving
farther apart in representational space and this is shown in red
colors in Fig. 5.
In the following analyses, we tested three specific hypotheses.

First, we hypothesized that there should be greater differences in
the magnitude of distance change relative to all other objects for
trained versus nontrained objects, corresponding to better dif-
ferentiation of trained objects generally. For each object (each
row of 30 × 30 difference matrix), we extracted the mean value of
distance change between that object and the 29 other objects.
We then separated these values based on whether the object was
one of the four objects trained or not. Second, we hypothesized
that the observable distance changes would not be uniformly
distributed across the representational space (difference matrix).
We predicted that there would be greater distance changes for
any two objects located more closely in representational space
prior to the start of training, relative to two objects that were
more distant pretraining. Said another way, we predicted a

significant negative correlation between the amount of post-
training distance change and the initial distance between two
objects, with objects nearer to each other exhibiting greater
change in representational distance. In perception, this corre-
sponds to a greater improvement in the discriminations between
more similar items relative to those that are less similar before
training. To test this prediction, we obtained correlations be-
tween object similarity, defined by subject-level average of pre-
training and posttraining similarity ratings, and the magnitude of
distance changes. Again, we obtained average correlations for
trained objects and all other, nontrained objects with the distance
change observed for those objects. Finally, we expected that results
observed with respect to the above hypotheses would differ for those
trained on ORFs compared to those trained on YUFOs, because of
differences in preexisting category experience.
Before contrasting data from learning novel objects against

data from learning ORFs, we first compared the data between
YUFO experiments (A and B). Although these experiments
differed during the training portion of the paradigm, these par-
ticipants completed the exact same ratings sessions, and given
that both versions of training encompassed at least some
subordinate-level discrimination, the changes in similarity ratings
may not have differed. A repeated-measures ANOVA with
training section (T1/T2) and learning status (Learned/Not
Learned) as within-subjects factors, and experiment version
(YUFO-A, YUFO-B) as a between-subjects factor, revealed no
three-way interaction of training section × learning status × ex-
periment, F(1, 22) = 0.33; P = 0.86; η2 = 0.001. There were also
no two-way interactions with experiment: Training section ×
experiment [F(1, 22) < 0.001; P = 0.99; η2 < 0.001] or learning
status × experiment [F(1, 22) = 0.003; P = 0.95; η2 < 0.001].
Finally, there was no main effect of experiment [F(1, 22) = 2.77;
P = 0.11; η2 = 0.11]. However, there were main effects of training
section [F(1, 22) = 20.8; P < 0.001; η2 = 0.48], showing greater
distance changes during T1 compared to T2, and of learning
status [F(1, 22) = 8.86; P = 0.007; η2 = 0.29] with greater
distance changes for trained relative to nontrained YUFOs.
Given the lack of differences between the two YUFO exper-
iments, we combined these data points for comparison with
the ORF data.
Selectivity of changes in representational space. The mean distance
changes for ORF and YUFO training are plotted in Fig. 6. A
repeated-measures ANOVA with training section (T1/T2) and
learning status of exemplar (Trained/Not Trained) as within-subjects
factors and experiment (faces/YUFOs) as the between-subjects factor
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revealed a reliable three-way interaction, F(1, 35) = 5.94; P = 0.02;
η2 = 0.12. There was also a significant two-way interaction of
training section × learning status [F(1, 35) = 4.87; P = 0.03;
η2 = 0.11], and marginally significant interactions of learning
status × experiment [F(1, 35) = 3.64; P = 0.06; η2 = 0.05] and
training section × experiment [F(1, 35) = 4.10; P = 0.05; η2 = 0.07].
The main effects of learning status [F(1, 35) = 26.7; P < 0.001;
η2 = 0.41] and training section were also significant [F(1, 35) =
18.5; P < 0.001; η2 = 0.32], indicating that learned objects
exhibited greater mean distance changes relative to objects not
learned and that the mean distance changes were greater in T1
compared to T2. Importantly, given the difference in the num-
bers of participants trained with faces (n = 13) and YUFOs (n =
24), we tested for equality of variances between experiments,
using subject-level mean distance changes. No differences in
variances were observed in any group of distance changes using
Levene’s test of equality of variances: T1 Learned [F(1, 35) =
0.40; P = 0.53]; T1 Not Learned [F(1, 35) = 4.31; P = 0.05]; T2
Learned [F(1, 35) = 0.58; P = 0.45]; T2 Not Learned [F(1, 35) =
0.38; P = 0.54].
Having set aside potential differences in equality of variance

and given the significant three-way and two-way interactions, we
completed a series of additional pairwise comparisons that ad-
dress our a priori hypotheses more directly. In the ORF group,
across training sections (T1 vs. T2), distances changes were
larger for trained ORFs, t(12) = 2.70; P = 0.01; d = 0.75, than for
nontrained ORFs, t(12) = −1.17; P = 0.26; d = 0.32. The mean
distance between the trained ORFs and all other ORFs in-
creased to a greater degree than was the case for nontrained
ORFs [t(12) = 3.68; P = 0.003; d = 1.02] during T1 and during T2
[t(12) = 2.69; P = 0.02; d = 0.75]. In the YUFO learning ex-
periment, across training sections (T1/T2) distances between
trained or nontrained YUFOs versus all other YUFOs differed
[t(23) = 2.32; P = 0.03; d = 0.47], with greater distance changes
for trained over nontrained YUFOs. Across training sections (T1
vs. T2) there were differences in distance change for both trained
YUFOs [t(23) = 4.58; P < 0.001; d = 0.93] and nontrained
YUFOs [t(23) = 4.76; P < 0.001; d = 0.97]. This is not surprising
given that the distance changes during T2, for both trained [t(23)
= 0.91; P = 0.37] and nontrained YUFOs [t(23) = 0.39; P = 0.70]
did not differ from zero.
Together, our analyses of distance changes revealed several

clear outcomes. First, the evidence indicates that distance
changes for trained objects were greater than for nontrained
objects both in those trained on ORFs and in those trained on
YUFOs. However, given the reliable interaction with experiment
and an effect size that is over twice as large for the ORF ex-
periment relative to the YUFO experiment, the difference be-
tween trained and nontrained objects was much larger for ORFs
than YUFOs in T1. This suggests that, as one gains experience
with a visual category, subsequent representational changes that
occur with exposure to a new exemplar become increasingly
specific to the novel object. Second, in both experiments the
distance changes were greater during T1 compared to T2. In-
terestingly, those learning ORFs exhibited continued nonzero
distance change in T2 for trained over nontrained ORFs, sug-
gesting a much richer and more complex representational space.
In contrast, those learning YUFOs showed no additional dis-
tance changes for trained over nontrained YUFOs at the group
level during T2.
Relativity of changes in representational space. Next, we tested our
second hypothesis that the distance change between objects
would occur preferentially for more similar pairs of objects. That
is, we predicted that objects initially perceived to be closer to-
gether would experience a greater shift in representational dis-
tance relative to two objects that were initially far apart. To test
this prediction, for each object learned by each participant, we
correlated the distance in space with the distance between the

object and all 29 other objects.† We then separated these pair-
wise correlations based on training status (Trained/Not Trained)
and tested for differences at the group level using the approach
used for absolute magnitude differences above. See Fig. 7 for a
summary of group-level results.
A repeated-measures ANOVA with training section (T1/T2)

and learning status (Trained/Not Trained) as within-subjects
factors, and experiment (ORFs/YUFOs) as a between-subjects
factor did not reveal a significant three-way interaction of
training section × learning status × experiment, F(1, 35) = 0.51;
P = 0.47; η2 = 0.01. There were no significant two-way interac-
tions either: Training section × experiment [F(1, 35) = 2.82; P =
0.10; η2 = 0.07] and learning status × experiment [F(1, 35) =
1.89; P = 0.17; η2 = 0.04], or learning status × training section
[F(1, 35) = 0.73; P = 0.39; η2 = 0.02]. There were, however,
significant main effects of learning status [F(1,35) = 7.30; P =
0.01; η2 = 0.17] and experiment [F(1, 35) = 22.5; P < 0.001; η2 =
0.39], but not training section [F(1, 35) = 0.94; P = 0.34; η2 =
0.02]. These main effects reveal larger negative correlations
overall for trained objects relative to nontrained objects and
larger negative correlations for ORFs relative to YUFOs. Be-
cause the interactions with experiment were not significant, we
did not conduct follow-up analyses.
Together, the findings from the analyses of correlations be-

tween similarity and distance change revealed one main differ-
ence between ORFs and YUFOs in representational changes
induced by exemplar learning: Overall correlations were more
negative for ORFs compared to YUFOs. This means that
changes in representational distance occurred more locally for
ORFs. Said another way, larger magnitude distance changes
tended to occur in closer proximity to the objects being learned,
rather than farther away, in representational space. Importantly,
the correlations for YUFOs did not differ from zero, suggesting
there was no differential localization of distance change overall;
rather, distance changes occurred more uniformly across the
representational space. Note, this pattern of results was observed
despite similar variability in pairwise representational distance
between YUFOs at the outset compared to between ORFs
(Fig. 5 and SI Appendix, Fig. S2), potentially allowing for similar
correlations with prerating similarity for YUFOs compared to
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distance change. Both ORFs and YUFOs are included across two consecutive
training sections (T1 and T2). Negative correlations correspond to greater
separation in representational space (moving apart) for objects that were
closer together in space initially. Error bars correspond to ±1 SEM.

†More specifically, we quantified similarity distance at the subject level. We averaged the
pretraining and posttraining similarity spaces for a given subject and then correlated the
average similarity distances with the changes in distance before and after training at the
individual subject level.
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ORFs. However, the opposite pattern was observed here, with
greater correlations uncovered in the representational space for
ORFs. A second main effect of learning status revealed that
trained objects exhibited more local distance changes relative to
nontrained objects. Close inspection of Fig. 7 suggests this effect
was driven more by the difference between trained and non-
trained ORFs than YUFOs, although the interaction with ex-
periment did not quite reach significance.
Finally, to further bolster our earlier claim that our training

paradigm was well balanced with respect to initial difficulty, and
to support the claim that the pattern of observed results was a
product of previous category experience rather than substantially
different training experiences, we present two supplementary
figures (SI Appendix, Figs. S3 and S4). These figures represent a
visual summary of the group-level results when every participant
(n = 13) trained on faces is closely matched with a single par-
ticipant from the YUFO experiment. Note that these results are
nearly identical to and correspond with the results shown in
those shown in Figs. 4, 6, and 7, and further confirm that the
results reflect preexisting category experience rather than dif-
ferences in the (matched) training.

Dimensionality of Representational Space. We conducted a final
analysis to explore possible changes in the underlying dimensions
of representational space as a function of training and visual
category. We performed principal component analyses on each
of the group-level 30 × 30 similarity matrices (shown in Fig. 5)
and plotted the percentage of explained variance by component,
as well as the cumulative variance across components (Fig. 8).
This analysis revealed that the overall dimensionality of the

representational space for ORFs was relatively constant across
ratings sessions.‡ The number of orthogonal components to ex-
plain any amount of variance did not change dramatically across
the experiment. However, this does not mean that individuals
could not change the relative weights of multiple dimensions
concurrently, facilitating better separation of the stimuli, as was
observed in the analyses above. The results suggest that individuals
have likely previously extracted the dimensions along which faces
vary, and perhaps, alter weights of different dimensions to meet

the demands of the perceptual task rather than massively reorganize
the dimensions.
In contrast, there was a change in the dimensionality of the

YUFO representational space between the first and second
ratings sessions (across T1). The analysis revealed that the 1st
component accounted for only half of the variance relative to
subsequent ratings sessions, and a larger amount of variance was
explained by the 2nd through 29th components. This indicates
that additional components from the first ratings section were
required to explain the same amount of variance as the smaller
number of components in the second and third ratings sessions.
While we make no inference about the specific meaning of indi-
vidual components, we conclude that, overall, the dimensionality
of the YUFO representational space appears to have decreased
with experience. Finally, this analysis revealed that in all three
ratings sessions, the representational space for ORFs appears to
have a different number of dimensions relative to the represen-
tational space for YUFOs, perhaps indicating differences in the
complexity of the stimulus or in the complexity of the visual
processes involved for each stimulus set.

Discussion
The aim of the present study was to elucidate how novel exem-
plars from categories of visual objects are incorporated into
representational space and the extent to which this process is
governed by preexisting category experience. To this end, we
implemented a 26-d visual search training paradigm to train in-
dividuals to recognize four exemplar objects at time. We quan-
tified representational space before, midway, and after training
using pairwise similarity ratings between all 30 objects. Three
groups of participants completed the study with one group
studying and rating ORFs and two groups studying and rating
three-dimensional–generated novel objects, YUFOs, with each
group having a slightly different training regimen (although,
because there were no significant differences in the representa-
tional analyses, we combined the data from these two groups in
the analyses). We then measured representational distance
changes at the individual stimulus level and examined to what
extent the changes observed were governed by previous category
experience. In the analyses of our data, we tested three distinct
hypotheses in the setting of two unique stimulus categories.
In our analyses of the visual search paradigm, we found that

performance generally improved over the course of training, and
that this improvement did not generally differ as a function of
visual category, particularly during T1. Individuals training on
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Fig. 8. Principle component analysis (PCA) of the group-level similarity matrices from each of three ratings sessions. Components are plotted, on the Left, by
variance explained, in decreasing order. On the Right, cumulative variance explained by adding each additional component is plotted.

‡To aid understanding of the data, SI Appendix, Figs. S5 and S6 show two dimensional
multidimensional scaling solutions for group-level representational space at pre, mid-,
and posttraining. Note that we make no inferences from these figures, as each individual
participant was randomly assigned to train on a different subset of stimuli.
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ORFs and those training on YUFOs improved roughly to the
same extent in both training sections (T1/T2). However, when
the amount of subordinate-level discrimination was matched
(ORFs vs. YUFO-B), there was a small category difference im-
provement over the first few sessions of the task: Individuals
learning ORFs were significantly better than those learning
YUFOs between the first and third sessions in both T1 and T2.
Importantly, the difference occurred only between experiments
where participants completed trials that contained exclusively
subordinate-level discriminations (matching for difficulty). The
lack of a greater difference in performance for the different
categories in our visual search task is not entirely surprising,
perhaps reflecting the significant overlap of our training tasks.
That is, both groups completed a substantial number of trials
that tapped subordinate-level discrimination. More generally,
advantages of expertise are commonly found in visual search
tasks, but these tasks are typically more complex or involve a
greater number of stimuli (34, 35) than the tasks adopted here.
More importantly, the lack of a stimulus category difference in
improvement, during the T1 training section in particular, means
that any observed differences in subsequent RSA of T1 are more
likely to have been driven by previous category experience and
not by an interaction with the training paradigm.
The analyses of changes in representational space revealed

two dissociations between face and novel-object learning. We use
the terms “what” and “where” to facilitate their distinction for
the reader. First, there was category specificity in the magnitude
of distance change, revealing what changed. For those trained on
ORFs, the distance between trained ORFs and all other ORFs
increased about twice as much as the distance between non-
trained ORFs and all other ORFs. For novel objects, the same
trend was found, but the difference between trained and non-
trained YUFOs was much smaller. These findings suggest that,
as one gains experience with a visual category, the separation
observed in representational space becomes more specific to the
newly learned exemplars, or less generalized to the space as a
whole (i.e., the new individual instances become increasingly
differentiated relative to existing representations). The second
category-specific dissociation revealed differences in where the
representational changes happen for faces relative to novel ob-
jects. Overall, the correlation between pretraining similarity and
posttraining distance change was greater for ORFs relative to
YUFOs. Additionally, close inspection of Fig. 7 reveals that this
correlation appears even more negative for trained relative to
nontrained objects. This indicates that as one gains experience
with a visual category, the change observed in representational
space occurs increasingly locally. Together, these dissociations in
what change happens and where this change occurs during ex-
emplar learning help to characterize the representational origin
of the learning in highly skilled visual perception.
Although clear trends emerged during T1, there were also

differences at T2. For ORFs, the specificity for trained relative to
nontrained faces persisted, but was smaller in magnitude. In-
terestingly, there appeared to be no reliable change at all during
T2 at the group level for those trained on YUFOs, despite clear
change during T1. This is somewhat counterintuitive given that
faces at the start of T2 were already farther apart on average (see
more red, overall, for faces compared to YUFOs in middle
column of Fig. 5) compared to YUFOs. Said another way,
YUFOs had more room to move apart in space (on the similarity
scale) relative to ORFs, yet they did not appear to undergo a net
distance change at all on average during T2. This does not mean
that there was no reorganization of space, just that, on average,
the net distance between objects did not change much over T2.
There are a few possible explanations for this. First, ORFs may
have continued to move apart in space, while YUFOs did not,
because individuals have extensive face experience that they can
exploit in the task and continue to make fine-grained differentiations.

For those learning YUFOs, there is no obviously related visual
category with which they have experience and, therefore, they do
not have other representations or dimensions that can be easily
leveraged in further differentiating YUFOs.
Alternatively, there may be differences in the way face and

YUFO stimuli are processed by the learner. While faces are
processed configurally as is often assumed to be true for domains
of expertise (36, 37), YUFOs may be processed, in our task,
more componentially. That is, individuals trained on YUFOs
may have simply extracted a single feature or two and then dif-
ferentiated objects along only these dimensions (for example, the
top or “hat” part of the YUFO; see Fig. 1). After T1, YUFOs
may have been sufficiently differentiated, in the similarity ratings
portion of the experiment, along those dimensions that the net
distance change was zero in T2. These two explanations are not
mutually exclusive, and may both be contributing to the observed
pattern of results.
In addition to the observed distance changes, we also found

that the dimensionality of representational space decreased with
training for YUFOs, but remained constant for ORFs. This
suggests that individuals trained on faces may have already
extracted the relevant dimensions along which faces vary, in-
cluding ORFs, and are thus stable over time. Individuals may
simply change the relative weightings of these existing dimen-
sions to facilitate better perceptual discrimination of ORFs. In
contrast, the individuals trained on YUFOs had no prior expe-
rience with these computer-generated objects, and so they could
not have known along which dimensions the YUFOs would vary.
In our training paradigm, individuals improved their ability to
discriminate highly similar YUFOs, implying that individuals
must have extracted at least some relevant features. This change
could cooccur with “discarding” nondiagnostic features, leading
to a lower dimensional representational space. The difference,
then, between experienced and expert perception may lie pri-
marily in additional fine-tuning of established dimensions.
A plausible neural implementation of this fine-tuning across

exemplars has been clearly demonstrated in the motor domain in
the context of brain computer interfaces (13, 14). By reducing a
high-dimensional neural space to a smaller set of orthogonal
dimensions, the intrinsic manifold, Sadtler et al. (14) could
successfully predict the extent of generalization on a brain
computer interfaces motor task. If a novel task could be
explained using the same low-dimensional space—that is, the
new task exists within the intrinsic manifold of the old task, albeit
with different dimensional weights—generalization to the new
task is possible. In the present study, the net dimensionality of
the representational space for faces did not change with training,
perhaps suggesting that ORFs lie within the existing intrinsic
manifold of faces more generally. Participants of the present
study, then, were likely reweighting existing dimensions of face
perception to permit the pattern of observed results. In contrast,
the intrinsic manifold observed for YUFOs appears to emerge
and change with training, suggesting that participants have to
extract de novo dimensions along which features vary. The dif-
ference then, between expert and novice visual perception, may
lie primarily in the degree to which an intrinsic manifold,
extracted from a high-dimensional neural space, permits efficient
generalization to novel exemplars.
In the present study, we implemented a face-training paradigm

with other-race faces instead of own-race faces. We made this
decision for two reasons. Pragmatically, our method of quanti-
fying representational space using similarity ratings has a
somewhat artificial ceiling, such that objects already far apart in
space might still exhibit distance changes with learning, but such
changes would likely not be detectable with our scale. The use of
ORFs in the present study ensured that we would be able to
detect both small and large distance changes, such as those ob-
served in Fig. 7. The second reason we used ORFs is to emphasize
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the spectrum of visual expertise, rather than postulate a binary
distinction. While our participants may not have been experts in
ORFs in the strictest sense (38), they almost certainly had some
ORF experience, as well as a lifetime of face experience generally.
Thus, the differences observed here are likely just the differences
between two points on the spectrum of experience. One can even
extrapolate out to an extreme case of expertise, own-race recog-
nition, and speculate what one would observe in the same ex-
periment theoretically. In this case, we predict an even more
extreme pattern of what and where findings compared to those
observed in our ORF condition (provided that the tasks are suf-
ficiently difficult to keep the observer off the ceiling). That is,
distance changes might only occur for newly encountered objects
and these changes might only occur locally in representational
space. This sliding scale of the specificity of findings that would be
expected to occur with varying experience further emphasizes the
need to study expertise along a continuum; there does not seem to
be any reasonable point at which to impose a binary distinction of
expert and nonexpert processes in the context of the findings
observed here.
The present experiment demonstrates the utility of a gener-

alized representational approach in comparing behavior across
stimulus categories. This approach has already substantially ad-
vanced neuroscientific investigations (39), and stands to benefit
behavioral investigations as well. In the domain of faces, repre-
sentational approaches have already led to a unifying theory of
face perception, Face Space (40), whose predictions have held
true across a large body of research (12). In the present study, we
found that a more generalized representational approach allows
specific predictions that might separate different types of rep-
resentational spaces (i.e., expert from novice). The motivation
for our approach is bolstered by the field, which has identified
several behavioral assays of visual expertise, including the in-
version effect and subordinate-level processing. Many of these
assays make assumptions about the underlying representations,
without explicitly quantifying the representational space. Our
approach offers a theoretical framework under which to bring
together disparate findings of the visual expertise field, and ex-
plicitly test predictions about “expert” representations. More
generally, comparing changes across representational spaces also
offers the advantage of directly examining domain general pro-
cesses across disparate visual object categories: For example,
during exemplar learning.
Although we specifically investigate the effect of previous ex-

perience on representational changes during exemplar learning, there

are a countless number of future directions worth exploring to un-
derstand better the principles that contribute to the development of
representational spaces that subserve highly skilled visual perception.
In future studies, it will be important to elucidate the contributions of
other aspects of learning, such as the coverage of the space during
learning, the relative emphasis or effort on different objects within a
category, the specific training task employed, as well as contributions
of nonperceptual features, such as semantics, to the development of
visual expertise. As an additional future direction more specific to the
present study, one might investigate the effects of sampling the rep-
resentational space itself on learning, perhaps by comparing the rat-
ings of a group of participants that completed training to a second
“wait-list” group that had no training. Understanding the contribu-
tions of these features of learning and confirming them with other
experimental approaches will elucidate further the stability of the
findings from the present study.
In summary, we conducted a multiday exemplar learning

paradigm in which we quantified representational changes at the
individual stimulus level before, in the middle, and after training.
Participants completed this learning paradigm with faces or
computer-generated novel objects, YUFOs. When individuals
had substantial previous category experience (faces), changes in
representational space were more specific to the trained exem-
plars in both magnitude and in representational locality. When
individuals learned novel objects (YUFOs), representational
changes were more generalized across the space, both in magni-
tude and representational locality. Finally, learning a novel visual
category was associated with a reduction in the dimensionality of
the representational space. Together, these findings offer a rep-
resentational mechanism by which highly skilled visual processing
emerges over the course of experience, as well as a theoretical
representational framework in which to explicitly test represen-
tational assumptions that have arisen from the field of visual
expertise.

Data and Experimental Materials.Data and experimental materials
are publicly available at DOI 10.1184/R1/11869524.
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